

UNIVERSITY OF TORONTO AEROSPACE TEAM 4925 DUFFERIN STREET | TORONTO, ONTARIO, CANADA | M3H 5T6 WWW.UTAT.CA | CONTACT@UTAT.CA

Rocket Flight Loads Determination

Emerson Vargas Niño Fred Chun

REDEFINING LIMITS

Motivation

- From project requirements:
 - "Defiance shall have a FOS of 2 during the point of maximum aerodynamic loading (max Q)."
- Defiance has a very high fineness ratio (FR)
 - Length to width ratio
- The higher the FR
 - The lower the drag, UP TO A POINT
 - The higher the effect of bending loads on a rocket, specially in high speed upper atmosphere winds

Motivation

- From project requirements:
 - "Defiance shall have a FOS of 2 during the point of maximum aerodynamic loading (max Q)."
- Defiance has a very high fineness ratio (FR)
 - Length to width ratio
- The higher the FR
 - The lower the drag, UP TO A POINT
 - The higher the effect of bending loads on a rocket, specially in high speed upper atmosphere winds

Does this really matter? I mean, what is the worst thing that could happen?

Source: https://www.youtube.com/watch?v=INxxyp_2fNI&t=15s

Approach

- We evaluated three methods for calculating flight loads and opted to proceed with the two in **bold**, which together offer a balance of simplicity and accuracy
 - PANAIR
 - Expected to give a semi-representative solution
 - Limited to AoA less than 2° and Mach numbers less than 3
 - Euler-Bernoulli beam theory
 - Simple method
 - Computationally cheap
 - Computational Fluid Dynamics (CFD)
 - Complex method
 - Computationally expensive
 - Not limited by angle of attack or Mach number

Computational Fluid Dynamics (CFD) Approach

Validation

- In order to use any sort of numerical analysis we should have some confidence that the results are meaningful
- If not, we could end up in a GIGO situation
 - Garbage in, garbage out
- Validation case is NACA RM-10
 - Validation geometry from the 1950's
 - Chosen because of its similar geometry to a rocket and similar flight conditions to
 R = 55 m
 Defiance at max-Q

1:3 NACA RM10

• RM-10 CFD results at Mach = 1.98, AoA = 4°

• RM-10 CFD results at Mach = 1.98, AoA = 4°

TAT.CA

• RM-10 CFD results at Mach = 1.98, AoA = 4°

• RM-10 CFD results at Mach = 1.98, AoA = 4°

Defiance CFD

- Two step process
 - 1. Finless version of Defiance (thus simpler mesh)
 - 2. Finned version of Defiance
- Using hybrid mesh generator Pointwise
- Using open-source CFD platform OpenFOAM
 - Using inviscid, compressible solver
- Run in parallel using 320 to 480 processors on Canada's fastest supercomputer, Niagara
 - Thank you to Prof. Groth and Mohamed Khalil

Finless Defiance CFD Mesh

• Total number of elements: ~ 7 million

Finless Defiance CFD Results

• CFD results at Mach = 2.24, AoA = 5°

Next Steps

- We need to re-run the RM-10 case, using the updated numerical methods and meshing approach
 - This will give us confidence in the current workflow which has changed a lot since the previous validation
- Post-process and extract the results from the Finned Defiance model

Finned Defiance CFD Results

Finned Defiance CFD Results

Finned Defiance CFD Results

Euler-Bernoulli Beam Theory Approach

Overview

- Rocket is treated as a free-free beam subject to
 - Normal aerodynamic lift forces
 - Inertial loads
- Apply Euler-Bernoulli beam theory
 - Integrate loads to get shears
 - Integrate shears to get moments
- Based on procedure by <u>Aspirepace</u>
- Aerodynamic coefficients found using AeroLab
- A 5.77° angle of attack was calculated assuming a 25 m/s wind gust at max Q

UNIVERSITY OF TORONTO AEROSPACE TEAM

Parameters

- Aerodynamic coefficients found using AeroLab
- 5.77° AoA calculated assuming 25 m/s wind gust at max Q

Angle of attack (AoA)	5.77°
Wind gust (assumed)	25 m/s
Total lift	885 N
Total mass	43.919 kg
Lateral acceleration	20.151 m/s ²
Total moment from lift	587 N m
Total moment of inertia	52.418 kg m ²
Rotational acceleration	11.191 rad/s ²
M _{max}	136 N m at body-wing

Transverse Loading Analysis Results

Point force diagram

Transverse Loading Analysis Results

Shear force diagram

23

Transverse Loading Analysis Results

Bending moment diagram

Thank you! Questions?

