
Optimal Hybrid Attitude Control for
Detumbling Spacecraft

by

Emerson Vargas Niño

A thesis submitted in partial fulfillment for the
degree of Bachelor of Applied Science

in the
Department of Mechanical and Industrial Engineering

Faculty of Applied Science & Engineering
University of Toronto

Copyright © 2018 by Emerson Vargas Niño

https://emersonvn.com/
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


Abstract
Department of Mechanical and Industrial Engineering

Faculty of Applied Science & Engineering

University of Toronto

Bachelor of Applied Science

by Emerson Vargas Niño

The B-Dot controller, a traditional method of detumbling is revisited and compared

against a recently developed hybrid method which utilizes a magnetic-impulsive con-

troller developed through modern optimal control theory in order to compensate for

inherent uncontrollability found in purely magnetic control. A number of simulations

were performed in order to compare the performance of the two systems over a range

of conditions including differing orbital altitudes and methods for impulse application

time.

Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
https://emersonvn.com/


Contents

Abstract i

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Orbital Mechanics 3
2.1 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Orbital Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Magnetic Field Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Spacecraft Kinematics and Dynamics 7
3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Rotational Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Rotation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Rotational Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 External Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.2.1 Control Torques . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2.2 Distburbance Torques . . . . . . . . . . . . . . . . . . . . 9

4 Magnetic Attitude Control 11
4.1 Magnetic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 B-Dot Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Controller Benefits and Limitations . . . . . . . . . . . . . . . . . . 13
4.3 Optimal Magnetic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.3 Linear-Quadratic Regulator . . . . . . . . . . . . . . . . . . . . . . 15
4.3.4 Optimal Magnetic Controller . . . . . . . . . . . . . . . . . . . . . 16
4.3.5 Controller Benefits and Limitations . . . . . . . . . . . . . . . . . . 17

5 Hybrid Optimal Control 18
5.1 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ii



Contents iii

5.2 Linear-Quadratic Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Optimal Impulse Time Selection . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Hybrid Optimal Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4.1 Controller Benefits and Limitations . . . . . . . . . . . . . . . . . . 23

6 Simulation Results 24
6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Simulation Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.1 B-Dot and Hybrid Controller . . . . . . . . . . . . . . . . . . . . . 25
6.2.2 Thrust Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.3 Altitude Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Conclusion 32
7.1 Closing Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Bibliography 34



List of Figures

2.1 Key Orbital Parameters [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 450 km Altitude Spherical Orbit at 87° . . . . . . . . . . . . . . . . . . . . 5
2.3 1350 km Altitude Spherical Orbit at 87° . . . . . . . . . . . . . . . . . . . 5
2.4 Earth Magnetic Field Components at 87° Inclination . . . . . . . . . . . . 6
2.5 Earth Magnetic Field Components at 30° Inclination . . . . . . . . . . . . 6

4.1 Continous Riccati Solution, Diagonal Components . . . . . . . . . . . . . 16
4.2 Continous Riccati Solution, Non-Diagonal Components . . . . . . . . . . . 17

5.1 Discontinuous Riccati Solution, Diagonal Components . . . . . . . . . . . 20
5.2 Discontinuous Riccati Solution, Non-Diagonal Components . . . . . . . . . 20
5.3 Eigenvalues of the Controllability Gramian Matrix . . . . . . . . . . . . . 22
5.4 First Eigenvalue of the Controllability Gramian Matrix . . . . . . . . . . . 22
5.5 Location of Two Optimally Placed Thruster Instances . . . . . . . . . . . 23

6.1 B-Dot Controller at Nominal Conditions . . . . . . . . . . . . . . . . . . . 26
6.2 Hybrid Controller at Nominal Conditions . . . . . . . . . . . . . . . . . . 26
6.3 Riccati Solution for 2 Impulses, Diagonal Components . . . . . . . . . . . 27
6.4 Riccati Solution for 2 Impulses, Off-Diagonal Components . . . . . . . . . 27
6.5 Hybrid Controller Utilizing 3 Optimally Placed Thruster Instances . . . . 28
6.6 Location of Three Optimally Placed Thruster Instances . . . . . . . . . . 29
6.7 Hybrid Controller Utilizing 2 Arbitrarily Placed Thruster Instances . . . . 29
6.8 B-Dot Controller at 1350km Orbit . . . . . . . . . . . . . . . . . . . . . . 30
6.9 Hybrid Controller at 1350km Orbit . . . . . . . . . . . . . . . . . . . . . . 31

iv



List of Tables

6.1 Performance Metrics for B-dot And Hybrid Controllers At Nominal Con-
ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2 Performance Metrics for Hybrid Controller With Differing Thruster In-
stances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Performance Metrics for B-Dot Controller at Differing Altitude Orbits . . 30
6.4 Performance Metrics for Hybrid Controller at Differing Altitude Orbits . . 30

v



Chapter 1

Introduction

1.1 Literature Review

A long popular technique for spacecraft attitude control has been through the use of

static magnetorquers. These are multiple wire coil turns which induce a magnetic dipole

moment when a control current passes through them, the interaction of the dipole mo-

ment and the Earth’s magnetic field generates a torque which can be harnessed to control

a spacecraft’s attitude. There is a fundamental performance drawback in this system in

which one axis will always be under actuated. This is a result of the torque being gener-

ated through the cross product interaction of the magnetic field and the magnetic dipole

moment, as such there is no torque component parallel to the magnetic field [2]. This

fundamental limitation has led to the rise of hybrid methods which combine more than

one actuation method in order to make up for inherent uncontrollability. Among them,

reaction wheels and magnetic actuators [3], magnetic and impulsive systems [2] [4], and

Lorentz force and impulsive methods [5]. All of the studies above center on general

spacecraft attitude control over time. In this work we will be discussing pure magnetic

as well as magnetic-impulsive hybrid methods for the explicit purpose of detumbling.

This mission critical scenario arises when a spacecraft has a large amount of angular

momentum that it needs to dump quickly. Spacecraft in orbit regularly need to dump

small quantities of momentum which accumulate over time due to external disturbances

however they so when already in a stable orbit with all systems operational. Situations

which require detumbling may also be situations in which not all systems are operational.

Such is typically the case when a spacecraft is initially ejected from its launch vehicle

and not all navigation sensors and actuation systems may be operational [6]. These

conditions set apart detumbling as a specific area and application of spacecraft attitude

control.

1
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1.2 Thesis Outline

This work focuses spherically on a traditional, simplistic form of detumbling named the

B-Dot law which is strictly magnetic and requires only the use of a readily available

magnetometer. The second controller we will focus on is a hybrid optimal approach

developed initially for formation flying utilizing Lorentz force actuation as well as impul-

sive control. This work was taken and extended to specifically target magnetic-impulsive

hybrid systems. We will first develop the classic B-Dot controller explaining the theory

behind its application with a discussion on the real life implications of implementing

such a system. Following this we will develop optimal magnetic control as a stepping

stone for optimal hybrid control, pausing to discuss the real world implications of an

optimal magnetic controller. Finally, we extend optimal magnetic control to include the

application of an impulsive thrust. We discuss how best to select the applied impulse

timing and the implications of utilizing the presented hybrid system. Lastly we simulate

a number of test cases for the controllers, comparing the performance of the systems over

a range of conditions including differing orbital altitudes as well as differing methods for

impulse application time.



Chapter 2

Orbital Mechanics

In order to understand the kinematics and dynamics of a spacecraft orbiting a body we

must first describe and understand the setting itself. In this section we will describe the

concepts of Orbital Mechanics necessary in order to fully describe an orbiting spacecraft.

2.1 Reference Frames

Given the nature of the problem at hand, it is apparent we need to be able to describe

the rotation of the spacecraft around its center of mass and also the movement of the

spacecraft with regards to the body it orbits. As such, we define a body-fixed reference

frame FB at the spacecraft center of mass and we apply the commonly used Geocentric

Equatorial Coordinate System (GECS) [7] as our non-spinning inertial reference frame

FI . The GECS has its origin at the center of the earth, an X-axis in the direction of the

vernal equinox, the same as the direction of the constellation Aries, a Z-axis pointing

towards the celestial north pole, directly above the geographic north pole, and a Y -axis

which completes the coordinate system using a right-hand rule convention. Some key

features mentioned of the co-ordinate system are shown in figure 2.1.

3
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Figure 2.1: Key Orbital Parameters [1]

2.2 Orbital Model

We assume a circular orbit and in order to describe the location of the spacecraft in

the inertial reference frame over time we define a position vector rI(t) in the Cartesian

coordinate system from the origin of FI to the origin of FB as follows,

rI(t) =


X

Y

Z

 =


R cos(nt)

R sin(nt)cos(i)

R sin(nt)sin(i)

 (2.1)

where t is time, R the semi-major axis, i the inclination angle the orbit makes with

respect to the equatorial plane, and n the mean motion of the satellite defined as

n =

√
µ

R3
(2.2)

with the standard gravitational parameter µ defined for earth.

Of primary focus will be a 450 km altitude spherical orbit at an inclination angle of 87°

as well as a 1350 km altitude spherical orbit also at 87° shown modelled using equation

2.1 in figures 2.2 and 2.3 respectively.
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Figure 2.2: 450 km Altitude Spherical Orbit at 87°

Figure 2.3: 1350 km Altitude Spherical Orbit at 87°

2.3 Magnetic Field Model

As the spacecraft will be rotating and translating as it orbits earth, the instantaneous

magnetic field vector B in the spacecraft reference frame FB will vary in time. A tilted

dipole model is used to model the earth’s geomagnetic field shown here in the Cartesian
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coordinate system [8],

BI(t) =
B0

R5


3XZ

3Y Z

2Z2 −X2 − Y 2

 (2.3)

Where the XY Z coordinates in time are obtained from 2.1 and B0 is equal to the

magnetic moment of the Earth [9].

Earth’s magnetic field tends to vary more towards the poles, hence small spacecraft which

take advantage of the earth’s magnetic field tend to prefer a near polar orbit where both

the magnitude and variability of the magnetic field and is larger. This can be seen clearly

in figures 2.4 and 2.5 which model the magnetic field, using equation 2.3, at 87° and 30°

respectively.
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Figure 2.4: Earth Magnetic Field Components at 87° Inclination
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Figure 2.5: Earth Magnetic Field Components at 30° Inclination



Chapter 3

Spacecraft Kinematics and

Dynamics

In order to undergo a study of spacecraft control it is important to first understand the

laws that govern the movement of spacecraft in the vacuum of space. Kinematics serves

to describe motion and dynamics serves to describe motion considering underlying forces.

3.1 Kinematics

3.1.1 Rotational Kinematics

Two common ways of describing the rotation of rigid bodies in space include Euler Angles,

and Quaternions. Euler Angles use 3 parameters φ, θ, ψ in order to describe what is

commonly referred to as yaw, pitch and roll. Quaternions use a set of 4 parameters

ε = [ ε1 ε2 ε3 ]T and η, which satisfy the orthogonality constraint εT ε+η2 = 1, where

1 is the identity matrix. Quaternions, unlike Euler Angles are free of singularities and

are thus preferred [10].

Angular velocity and quaternion rates of change can be related through the following

equation which fully describes the rotational kinematics of the spacecraft [11].

[
ε̇

η̇

]
=

1

2

[
η13×3 + ε×

−εT

]
ω (3.1)

7
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The skew-symmetric operator (·)× used in equation 3.1 is used to represent the cross

product operator and acts on a generic vector an×1 to create a skew-symmetric matrix

which satisfies the condition a×T = −a×, such that

a× =


0 −a3 a2

a3 0 −a1
−a2 a1 0

 (3.2)

3.1.2 Rotation Matrix

In order to express a parameter from the inertial frame in the body-fixed frame we can

apply the rotation matrix formulated with Quaternions as [10],

CBI = (η2 − εT ε)1 + 2εεT − 2ηε× (3.3)

3.2 Dynamics

3.2.1 Rotational Dynamics

The rotational dynamics of a spacecraft can be modelled using Euler’s equation of motion

[11],

Iω̇ + ω×Iω = τctrl + τdist (3.4)

Where I is the inertia matrix, and ω refers to the angular velocity in the body-fixed

reference frame. The first torque contribution τctrl, represents the torque intentionally

applied to the spacecraft for the purpose of attitude control and the second contribution

τdist represents the unintentional external torque disturbances. Both torque contribu-

tions are modelled as being applied about the spacecraft’s center of mass.

3.2.2 External Torques

3.2.2.1 Control Torques

As stated in chapter 1, for the purposes of detumbling control, the spacecraft modelled in

this study utilizes a combination of a 3 axis propulsion system and 3 magnetorquers on



9

each of the spacecraft’s principal inertia axis. The torque applied by these two systems

is modeled as follows [2],

τctrl = τmag + τimp (3.5)

where,

τmag = m×BB (3.6)

τimp =
N−1∑
k=1

nkδ(t− tk) (3.7)

The first control torque term τmag in equation 3.5 refers to the magnetic torque caused

by the interaction of the earth’s magnetic field, in the body-fixed reference frame, and

the magnetic dipole moment induced by passing a controlled current through multiple

wire coil turns within a magnetorquer body.

As seen by the application of the skew-symmetric operator to the magnetic dipole mo-

ment in equation 3.6, the resulting torque will always be orthogonal to the instantaneous

magnetic field vector. As such, the axis parallel to the instantaneous magnetic field vec-

tor will always be uncontrollable. Due to the orientation of the earth’s magnetic field, an

orbiting spacecraft would thus temporarily lose control over one axis as it crosses over the

polar regions, and would lose temporarily lose control of a separate axis over the Equa-

torial regions [12]. A complimentary torque system may be positioned and actuated in

such as way as to compensate for this lack of control.

Some common torque systems implemented in spacecraft in addition to magnetorquers

include reaction wheels, and different types of thrusters such as resistojets, monopropul-

sion systems, hall thrusters, and cold gas thrusters to name a few [13]. The spacecraft

in this study utilizes a generic impulsive thruster in order to compensate for the uncon-

trollability of the magnetorquers.

The thruster control torque contribution is seen in equation 3.7, and is modelled as an

impulse using the Dirac-Delta function δ, applied a total of N −1 times at differing time

intervals.

3.2.2.2 Distburbance Torques

The second contribution of torque τdist in equation 3.4 comes from external disturbances

such as aerodynamic drag, gravity gradient, residual magnetic dipoles from onboard

electronics, and solar pressure. For near-earth small spacecraft the most prominent
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sources of disturbance come from the gravity gradient, and residual magnetic dipoles

from onboard electronics. These contributions can be respectively modelled as [4],

τdist =
3µ

|rB|5
r×BIrB +m×

distBB (3.8)

As the focus of this study is primarily controller design and comparison we elect to not

model these disturbances however it should be noted that depending on the altitude of

the orbit the spacecraft inhabits, they may or may not be negligible.



Chapter 4

Magnetic Attitude Control

For the purposes of attitude control the spacecraft being modelled has three orthogonal

magnetorquers and a propulsion impulse system. The effect of the magnetorquers can be

modelled using equation 3.6. The design parameter in this equation is m, the magnetic

dipole moment. We now look at two models for selecting m, a B-Dot controller and an

optimal approach.

4.1 Magnetic Control

Considering only the kinetic component of the Hamiltonian describing the spacecraft,

and modelling the kinetic energy as strictly rotational we arrive at [14]

T =
1

2
ωT Iω (4.1)

The rate of change of the rotational kinetic energy is then given as

Ṫ = ωT Iω̇ (4.2)

Considering Euler’s equation of motion 3.4 with external torque provided by magnetics

alone 3.6 we get

Iω̇ + ω×Iω = m×BB (4.3)

Substituting this into equation 4.2 we arrive at

Ṫ = ωT (−ω×Iω +m×BB) (4.4)

11
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After simplifying this form we arrive at

Ṫ = −k
(
B×
B ω

)T
B×
B ω (4.5)

Equation 4.5 is significant as Ṫ ≤ 0, leading to the conclusion that the feedback B×
B ω

effectively reduces the rotational kinetic energy of the system.

When implemented practically, the feedback above requires the measurement of both the

magnetic field as well as the angular velocity through the use of a magnetometer and a

gyroscope respectively.

Detumbling is the act of dissipating a typically large amount of angular momentum

from a spacecraft. This typically occurs after the spacecraft is initially ejected from its

launch vehicle, when any external disturbances perturb the spacecraft significantly, and

when the spacecraft’s main active controller does not respond for whatever reason. All

aforementioned scenarios are critical and non-nominal, in addition it is reasonable to

assume not all spacecraft systems are online and operational in the above conditions.

As such special care must be taken when selecting the detumbling method in order to

minimize risk of failure. [6]

When taking the aforementioned statements into consideration, it becomes clear that a

detumbling controller that requires the use of two separate sensors in order to operate

is highly impractical and could risk mission failure. We now turn to the B-Dot con-

troller which avoids the aforementioned problem and is a popular choice for detumbling

spacecraft due to its simplicity and ease of implementation.

4.2 B-Dot Controller

The relationship between the magnetic field rate of change in FI and FB can be modeled

as [14]

ḂI = ḂB + ω ×BB (4.6)

As seen from FB, there are two contributions that cause the magnetic field to vary

over time. The first contribution is a result of the spacecraft travels in an orbit around

earth, thus its position relative to the origin of FI changes over time varying the inertial

magnetic field vector from equation 2.3; the timescale of this change has an order of

magnitude of hours. The second contribution is a result of the spacecraft rotating about

its center of mass, the origin of FB, thus the instantaneous magnetic field experienced by
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the spacecraft changes in time; the timescale of this change has an order of magnitude

of seconds.

Because of the slow rate of change of the first contribution, we can effectively neglect

this term. Rearranging and reducing equation 4.6 results in [14]

ḂB ≈ B×
B ω (4.7)

Hence we can see that that the local magnetic field rate of change provides a meaningful

value for the attitude rate of the satellite, a requirement of the previously discussed

feedback for the magnetic controller in equation 4.5. This is significant as this new

requirement can be approximated trivially through the use of a readily available on-

board magnetometer by differentiating between two successive sensor readings as,

ḂB ≈
BB(tn)−BB(tn−1)

tn − tn−1
(4.8)

Multiplying the above result by a constant negative gain results in the B-Dot controller,

m = −kḂB (4.9)

Substituting back into equation 3.6, we obtain an expression for the torque of a B-Dot

controller

τmag =
(
−kḂB

)×
BB (4.10)

4.2.1 Controller Benefits and Limitations

B-Dot controllers have proven popular over the years as they only require a magnetome-

ter and magnetorquers be present. Magnetometers are relatively inexpensive sensors

which can easily be made redundant and magnetorquers are mechanically simpler than

their complicated mechanical or chemical counterpart systems such as reaction wheels

or propulsion systems respectively [6].

These controllers however are not without fault and they do have performance limita-

tions. The approximation set out in equation 4.7 hold best when the rate of change

of the body-fixed magnetic field ḂB varies more rapidly as a result of the spacecraft

motion than the spacecraft orbit [14]. As this is always the case in the detumbling sce-

narios outlined above we can confidently use B-Dot for detumbling purposes. As with

any method requiring an approximation however, there will always be an inherent error
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present. We further discuss the efficacy of B-Dot in chapter 6. Next we examine a more

robust magnetic controller which aims to maximize performance.

4.3 Optimal Magnetic Control

4.3.1 Linearization

Designing controllers for nonlinear systems can lead to unnecessary complexities and

should be avoided if possible. Recalling that equation 3.4, used to describing the dy-

namics of the spacecraft, is non-linear we now linearize it in preparation for the optimal

controller design.

We assume FI and FB differ by a small angle transformation. Since for small angles

every attitude parameterization method, including Quaternions and Euler Angles, is

approximately equal we can assume that [11]

θ ≈ 2ε (4.11)

This leads to a rotation matrix given by

CBI ≈ 1− θ× (4.12)

Furthermore, if we assume the spacecraft’s angular rates are small then

θ̇ ≈ ω (4.13)

Substituting the aforementioned relationship into equation 3.4 while considering only

the magnetic torque contribution from equation 3.6 and neglecting the products of small

terms, results in the following linearized equation of motion [3]

Iθ̈ = −B×
I m (4.14)

It should be noted that the magnetic torque in the linearized equation uses the inertial

reference frame FI instead of the proper body-fixed frame FB as applying the transfor-

mation [11]

BB = CBIBI ≈ (1− θ×)BI (4.15)
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and making the same assumptions as before, as well as neglecting small terms results in

BB ≈ BI (4.16)

These simplifications allow the controller to be designed around linear equations however

practically, when implemented into the spacecraft it is only logical to use BB as this is

what is readily available through sensor measurements.

4.3.2 State Space Model

The dynamics of an optimal control law for a continuous magnetic input can be modelled

for the linear time-varying (LTV) case as [3]

ẋ(t) = Ax(t) +B(t)u(t) (4.17)

Where ẋ is the differentiated state vector, A the state matrix, u the continuous control

input and B the continuous control input matrix, not to be confused with the magnetic

field vector. We define the state vector as

x =

[
θ

θ̇

]
(4.18)

We now implement the differentiated form of 4.18 along with the linear equation of

motion 4.14 into the state space model resulting in the LTV equation [3][
θ̇(t)

θ̈(t)

]
=

[
03×3 13×3

03×3 03×3

][
θ(t)

θ̇(t)

]
+

[
03×3

−I−1B×
I (t)

]
m(t) (4.19)

4.3.3 Linear-Quadratic Regulator

In order to minimize the effort of the continuous control input u for the continuous LTV

system in 4.17, we define a quadratic cost function J given by [3]

J =
1

2
xT (tf )Sx(tf ) +

1

2

∫ tf

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (4.20)

Where x and u are from equation 4.17. Q, R and S are symmetric positive definite

matrices, with Q and R being used to weigh the state and control effort relative impor-

tance.
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The combination of the linear system dynamics in 4.17 as well as the quadratic cost

function in 4.20 results in the well known linear-quadratic regulator (LQR) problem.

Utilizing the Hamiltonian associated with the model, as well as the calculus of variations

as outlined in [2], results in the optimal continuous feedback control law which minimizes

the cost function [3]

u = −R−1BT (t)P (t)x(t) (4.21)

As well as the following Riccati equation [3]

− Ṗ (t) = ATP (t) + P (t)A−B(t)P (t)R−1P (t)BT (t) +Q (4.22)

The Riccati equation is peculiar in that it must be integrated backwards in time from

P (tf ) to P (0) using the terminal condition P (tf ) = 03×3.

The coefficients of 4.21 and 4.22 are given as part of 4.17 and 4.20.

8 8.5 9 9.5 10

0

2

4

6

8
10

12

Figure 4.1: Continous Riccati Solution, Diagonal Components

4.3.4 Optimal Magnetic Controller

As the magnetic dipole moment m is the continuous control input u, we thus obtain an

optimal solution for the time-varying magnetic dipole moment. Simplifying and format-

ting the relevant variables as a gain matrix we obtain the optimal magnetic controller

m = −Kω (4.23)

= −
[
R−1(−I−1B×

I )TP
]
ω
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Figure 4.2: Continous Riccati Solution, Non-Diagonal Components

Substituting back into equation 3.6, we obtain an expression for the torque of a B-Dot

controller [3]

τmag =
(
−
[
R−1(−I−1B×

I )TP
]
ω
)×
BB (4.24)

4.3.5 Controller Benefits and Limitations

The optimal magnetic controller introduces a more robust method for selecting the mag-

netic dipole moment based on optimal control theory. The obvious practical downside

of this method is the requirement of both angular velocity and magnetic field measure-

ments. The requirement for the Riccati equation solution is not a serious drawback as

the solution can be computed ahead of time and stored as a compact text file on the

spacecraft. It is recommended to store the full solution of the Riccati and not an approx-

imation as this could lead to performance degradation [5]. A performance comparison of

the optimal magnetic and B-Dot controller is carried out in chapter 6.



Chapter 5

Hybrid Optimal Control

There are a number of inherent limitations associated with control provided exclusively

by magnetorquers [4] that ultimately result in a magnetorquer based system not being

robust enough to be the main active controller. In a detumbling use case however such

limitations can often be overlooked, however one may wish to increase the performance

of the magnetorquer based system during periods of low efficiency. In this chapter we will

discuss the hybrid controller method introduced in [5] which utilizes both magnetorquers

and impulsive thrusters for the purpose of complimenting the magnetic controller during

periods it is least efficient. The optimal hybrid controller leverages the optimal magnetic

control discussed in section 4.3 introducing the impulsive component of control.

5.1 State Space Model

The introduction of discrete system dynamics as a result of the thruster’s impulsive

nature lead us introduce a new state space model for this behavior as well as clarify the

continuous state space model of the magnetic actuators outlined in equation 4.17. We

can model the hybrid system as follows

ẋ(t) = Acx(t) +Bc(t)uc(t), t 6= tk (5.1)

x(t+k ) = Adx(t−k ) +Bdvd, t = tk (5.2)

Equations 5.1 and 5.2 correspond to the continuous and discrete models respectively and

thus use corresponding (·)c and (·)d subscripts to denote variables associated with the

two models.

18



19

Impulses are applied at time instance tk, with t−k and t+k denoting the instant immediately

before and after the impulse application.

We linearize the equation of motion considering only the impulsive torque contribution,

making the appropriate substitutions and simplifications as outlined in subsection 4.3.1

and substitute this into equation 5.2 resulting in the explicit hybrid state space model

[4] [
θ̇(t)

θ̈(t)

]
=

[
03×3 13×3

03×3 03×3

][
θ(t)

θ̇(t)

]
+

[
03×3

−I−1B×
I (t)

]
m(t), t 6= tk (5.3)

[
θ(t+k )

θ̇(t+k )

]
=

[
13×3 03×3

03×3 13×3

][
θ(t−k )

θ̇(t−k )

]
+

[
03×3

−I−1

]
nk, t = tk (5.4)

5.2 Linear-Quadratic Regulator

The quadratic cost function associated with the hybrid system is given as [3]

J =
1

2
xT (tf )Sx(tf ) +

1

2

∫ tf

0

[
xT (t)Qcx(t) + uT (t)Rcu(t)

]
dt (5.5)

+
1

2

k=1∑
N

[
xT (t−k )Qdx(t−k ) + vTRdv

]
(5.6)

The weight matrices Qc, Qd, Rc, Rd are all symmetric positive definite matrices, with

Q and R matrices responsible for weighing state and control effort relative importance

for both continuous and discrete states, depending on the respective subscript.

Utilizing the continuous and discrete Hamiltonians associated with the model, as well as

the calculus of variations as outlined in [3], results in the optimal continuous and discrete

feedback control laws which minimize the hybrid cost function

u = −R−1
c B

T
c (t)P (t)x(t), t 6= tk (5.7)

vk = −R−1
d B

T
dA

−T
d

[
P (t−k )−Qd

]
x(t−k ), t = tk (5.8)

As well as the following continous and discrete Riccati equations respectively [4]

−Ṗ (t) = AT
c P (t) + P (t)Ac −Bc(t)P (t)R−1

c P (t)BT
c (t) +Qc (5.9)

P (t−k ) = Qd +AT
dP (t+k )Ad −AT

dP (t+k )Bd

(
Rd +BT

dP (t+k )Bd

)−1
BT
dP (t+k )Ad

(5.10)
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For the hybrid problem at hand the Riccati equation must be integrated backwards in

time from the time tf to t+k using the terminal condition P (tf ) = 03×3. The thrusters

impulsive behavior render the continuous form of the Riccati undefined at the instance

of impulse application tk, thus at t+k the discrete Riccati 5.10 must be applied to ob-

tain P (t−k ) at which point the continuous Riccati can resume being applied until the

subsequent impulse application.
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Figure 5.1: Discontinuous Riccati Solution, Diagonal Components
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Figure 5.2: Discontinuous Riccati Solution, Non-Diagonal Components
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5.3 Optimal Impulse Time Selection

Given the discrete nature of impulsive thruster systems, a natural problem that arises

with their use is the selection of optimal application times. The majority of methods

utilize some measure of system controllability often provided through the controllability

Gramian. The controllability Gramian can be found as the solution of the Lyapunov

equation, which is ever present in discussions of spacecraft control theory as magnetic

control laws often rely on Lyapunov stability or Floquet theory [15]. The controllability

Gramian is given by [5]

W c =

∫ t1

t0

eA(t−τ)BBT eA
T (t−τ)dτ (5.11)

Where A and B are the coefficients to our continuous state space model 4.17. For an

LTV system such as this the controllability Gramian must be computed over small time

steps h spanning from t0 through to tf .

The controllability Gramian can determine if the system is controllable and the level

of controllability. A system is controllable from t0 to t1 if W c is non-singular. An

n× n square matrix such as W c is non-singular only if its rank is equal to n, otherwise

known as having full-rank, or equivalently if the determinant of the system is non-zero

[5]. The interpretation of this requirement is that the all rows and columns are linearly

independent and invertible. We determine the rank of W c and ascertain the system is

controllable. It’s worth noting that in a hybrid system such as this, if a large enough gain

is applied to the impulsive thrusters system, the system will be controllable regardless

of the magnetic field [11].

The interpretation ofW c is that it defines an ellipsoid located in the system state space

which encompasses the set of states reachable within a singular unit of energy[16]. The

eigenvalues of the system quantify the energy required to reach a particular state and

the closer to zero a particular eigenvalue is, the closer to singular W c will be, thus the

minimum energy necessary to drive the system to a particular state will be higher[16].

As such, we use the minimum eigenvalue as a metric for least controllable state present

in the state space system representation, which in our case models the magnetic control.

This technique tell us when magnetic control is least effective, therefore it is only logical

that additional control effort at this instant, provided by thrusters in this scenario, should

lead to increased momentum dampening. This technique has proven effective in hybrid

attitude controllers for spacecraft [5] [2].

In figure 5.3 we see the three eigenvalues associated with our particular system and

see the first eigenvalue is always smaller than the other two. Analyzing this eigenvalue
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more closely in figure 5.4, we find the time instances associated with the system’s local

minima and choose these to be our impulse application times. The associated locations

in orbit can be seen in figure 5.5. Only the first and second impulse locations are marked

as we will mostly be looking at two impulse application systems. A discussion of the

effect of a third impulse application can be found in subsection 6.2.2, and a discussion

of the performance benefits associated with this optimal impulse application time over

arbitrarily chosen application times can be found in subsection 6.2.2.
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Figure 5.3: Eigenvalues of the Controllability Gramian Matrix
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Figure 5.4: First Eigenvalue of the Controllability Gramian Matrix

5.4 Hybrid Optimal Controller

As the hybrid controller does not modify the continuous portion of the controller, the

application of the continuous control will be the same as outlined in section 4.3. In
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Figure 5.5: Location of Two Optimally Placed Thruster Instances

order to apply the impulsive control however, the impulsive feedback control must be

calculated using 5.8 and fed into 5.2 to determine the change in spacecraft attitude.

5.4.1 Controller Benefits and Limitations

Every controller we have looked at so far is increasingly complicated as compared to the

last. The optimal hybrid controller, an extension of the optimal magnetic controller, is

the most complex controller discussed because of the necessity for thrusters. As with

any system, the higher the number of components, the higher the risk of failure. This

would imply however that the spacecraft does not already include thrusters, which many

spacecraft do. Having a propulsion system on-board as well as magnetorquers means that

should the spacecraft require detumbling, and all systems are operational, The optimal

hybrid control can be utilized in order to detumble the spacecraft at a much higher rate

than would otherwise be possible utilizing magnetics alone. The performance benefit of

this controller over those previously discussed is investigated in chapter 6.



Chapter 6

Simulation Results

6.1 Simulation Setup

With our description of the orbital path from equation 2.1, geomagnetic field from equa-

tion 2.3, and spacecraft kinematics and dynamics from equation 3.4 and 3.1 respectively,

we now have a complete description of the physics of the system which we implement

into MATLAB. Equations 3.4 and 3.1 are integrated simultaneously over time in order

to describe the spacecraft’s changes in attitude. A 4th order Runge-Kutta scheme (RK4)

with a fixed step size h was chosen for integration for its simplicity and sufficiently low

error. In big O notation, a fixed step RK4 scheme has O(5) error over a single step size

and has a total error of O(4) over the entire interval [a, b] [17].

Unless otherwise noted all simulations have a 450 km orbit with a near polar 87° incli-

nation angle. The hybrid controllers apply two impulses as seen in 5.5.

The attitude initial conditions were given by

ε0 = [ 0 0 0 0 ]T , η0 = 1

ω0 = [ 0.05236 0.05236 0.05236 ]T rad/s
(6.1)

Where 0.05236 rad/s [18] corresponds to experimental values of a similarly sized space-

craft in LEO being ejected from its launch vehicle, and thus needing to be detumbled.

In addition,

I =


27 0 0

0 17 0

0 0 25

 kg m2 (6.2)
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In order to simplify choosing controller inputs for the state space models, well known

diagonal matrices were multiplied by scalar values such that

Qc = qc I = 108 I

Qd = qd I = 1010 I

Rc = rc 13×3 = 1.5× 104 13×3

Rd = rd 13×3 = 1013 13×3

(6.3)

In order to quantitatively compare simulation results, the following norms were defined

to act as performance metrics

||ω||3T =

√
1

3T

∫ 3T

0
ωTωdt]]

||m||3T =

√
1

3T

∫ 3T

0
mTmdt

(6.4)

In order quantify the electrical energy consumed by the magnetorquers, a representative

study was used which models a similarly sized spacecraft with the same orbit. The energy

consumption is then given as [2]

E =
[
3R/(n2A2)

] ∫ T

0
mTmdt (6.5)

where R is the coil’s electrical resistance, n the number of coil turns, A the coil’s total

area. The product of
[
3R/(n2A2)

]
was calculated as 3.03× 105 based on representative

missions [2].

6.2 Simulation Discussion

6.2.1 B-Dot and Hybrid Controller

Shown in figure 6.1 are the results of a nominal simulation using a B-Dot controller, while

figure 6.2 shows the results of an optimal hybrid controller. Immediately apparent upon

inspection is that the hybrid controller is able to detumble the spacecraft not only faster,

but ultimately also to a greater degree as the angular velocity components appear to be

closer to 0 at the 2 orbit mark. Despite this however, the B-Dot controller is still able

to effectively damp out oscillations within the 2 orbit window. The B-Dot controller

effectively takes twice as long as the hybrid control to approach the same degree of
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dampening (as seen at the 1 orbit mark of 6.1). The solution to the Riccati equation

associated with the hybrid controller is seen in figure 6.3 and 6.4.

The performance metrics from table 6.1 show that the hybrid controller is still heavily

dependent on the magnetic portion of the control as the magnetic moment between

optimal and B-Dot is very close. Both magnetic and impulsive components are clearly

evenly balanced. Worth noting is the fact that the second thruster instance does not

appear to be strictly necessary as the angular velocity components were nearly 0.

Table 6.1: Performance Metrics for B-dot And Hybrid Controllers At Nominal Con-
ditions

Figure Controller ||ω|| ( rads ) ||m|| (Am2) E (GJ)

6.1 B-Dot 0.085 3.0 46.4

6.2 Hybrid 0.069 2.7 36.6
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Figure 6.1: B-Dot Controller at Nominal Conditions
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Figure 6.2: Hybrid Controller at Nominal Conditions



27

0 0.5 1 1.5 2

0

2

4

6

8

10

12
10

12

Figure 6.3: Riccati Solution for 2 Impulses, Diagonal Components
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Figure 6.4: Riccati Solution for 2 Impulses, Off-Diagonal Components

6.2.2 Thrust Variation

The effect of a secondary thruster instance does not appear to have much of an effect

for optimally placed thruster instances as well as arbitrarily placed thruster instances

as seen in figures 6.2 and 6.7 respectively. This is because a single thruster instance

combined with he magnetic control is able to effectively detumble the space fact before

the arrival of the secondary optimal thruster instance. This is significant as it leads

to the conclusion that the optimal thruster instance selection through the minimum

eigenvalue as discussed in section 5.3, is not strictly necessary, although can provide

marginal improvements as seen by the modest increase in performance by the angular
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velocity performance metric of table 6.2. The table also reveals that the performance

benefits of three optimally placed thruster instances as opposed to two, is practically

null as seen in figure 6.5, reinforcing the design decision to analyze the effect of only two

thruster instances.

Table 6.2: Performance Metrics for Hybrid Controller With Differing Thruster In-
stances

Figure Controller Impulses ||ω|| ( rads ) ||m|| (Am2) E (GJ)

6.2 Hybrid 2 nominal 0.069 2.7 36.6

6.5 Hybrid 3 nominal 0.069 2.7 36.6

6.7 Hybrid 2 arbitrary 0.077 2.8 40.4
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Figure 6.5: Hybrid Controller Utilizing 3 Optimally Placed Thruster Instances
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Figure 6.6: Location of Three Optimally Placed Thruster Instances
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Figure 6.7: Hybrid Controller Utilizing 2 Arbitrarily Placed Thruster Instances

6.2.3 Altitude Variation

When comparing the performance of the B-Dot controller at 450km and 1350km it is

apparent that the higher altitude does inhibit controller performance as seen by the

metrics of table 6.3. This is because the tilted dipole moment we are using decreases

by a factor or R−3/2 as the distance from earth increases. The smaller the magnetic

field, the smaller the possible magnetic torque can be applied to the spacecraft. Despite

this however we see that the B-Dot controller is robust enough to function at the low

and middle levels of low earth orbits where the majority of small spacecraft like the one

modelled reside. We may infer from the factor that decreases the magnetic field over



30

distances R−3/2, that due to the almost square nature of the factor the B-Dot algorithm

may begin to fail at the highest levels of low earth orbits.

Examining the effect of the higher orbit on the optimal controller reveals that it is

vastly more robust than the B-Dot controller at being capable of functioning at higher

earth orbits. It is clear that like the B-Dot controller, it also suffers from the decreasing

magnetic field as seen by the decreased level of momentum dampening before the impulse

instance as compared to the 450 km orbit from figure 6.1. The robustness then comes

from the impulsive part of the controller is able to compensate enormously when it is

applied. This suggests that although optimal thruster instance selection from section 5.3

does not severely impact the performance of the hybrid controller at the lowest levels of

low earth orbits, the effect might begin to be appear more pronounced as pure magnetic

controllers experience higher levels of uncontrollability.

Table 6.3: Performance Metrics for B-Dot Controller at Differing Altitude Orbits

Figure Controller Altitude (km) ||ω|| ( rads ) ||m|| (Am2) E (GJ)

6.1 B-Dot 450 0.085 3.0 46.4

6.8 B-Dot 1350 0.092 2.8 49.2
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Figure 6.8: B-Dot Controller at 1350km Orbit

Table 6.4: Performance Metrics for Hybrid Controller at Differing Altitude Orbits

Figure Controller Altitude (km) ||ω|| ( rads ) ||m|| (Am2) E (GJ)

6.2 Hybrid 450 0.069 2.7 36.6

6.9 Hybrid 1350 0.068 2.5 39.6
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Figure 6.9: Hybrid Controller at 1350km Orbit



Chapter 7

Conclusion

7.1 Closing Thoughts

Ultimately the question of whether or not it is recommended to implement a B-Dot

detumbling controller over an optimal hybrid controller or vice versa comes down to

the system requirements. If there is an explicit requirement for the spacecraft to dump

momentum as fast as possible in order to start active maneuvers then it is clear that the

hybrid controller is much faster than the B-Dot controller. Such a case might arise when

dealing with spacecraft at rapidly decaying low orbits which need to maximize their

useful life time, or with regards to constellations of spacecraft requiring strict control

with minimal downtime. However, if detumbling rates in the order of one orbit can be

tolerated then there is no need to utilize a hybrid controller that favors speed.

The B-Dot controller appeared to work well for lower level, low earth orbits and was

able to effectively dump momentum in about one orbital period. However as altitude

increased, there was rapid performance degradation because the controller relies on a

strong magnetic field. This proved the controller was not robust enough to readily

handle various missions without the careful optimization. Although it wasn’t tested it

is assumed that due to the weaker, slowly changing magnetic field near the equator, the

controller would not perform well under such conditions. For the common, near-polar,

87° orbits at altitudes of approximately 450 km, the B-Dot controller is expected to work

reasonably well if detumbling times in the order of one orbital period are acceptable.

For other cases, either different inclinations, or different altitudes the optimal hybrid

controller should be considered.

Mission guarantee success should always be considered when choosing attitude con-

trollers. The hybrid controller requires a thruster system, a working IMU as well as

32
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computational resources in order to perform the necessary calculations and simulations

ahead of launch. If these resources are not readily available or are not able to perform

the necessary tasks in an expert manner, the whole mission success could be placed in

jeopardy. Given that the momentum dumping procedure is mission critical as it may

occur when not all the spacecraft’s systems are online then the optimal control law may

not even be an option because of the high number of systems it requires be operated.

If the benefits of a hybrid controller end up outweighing the potential risks, then it is

clear no more than 2 impulse instants need be applied in order to rapidly bring the

system to equilibrium. If the system is to be considered for higher than low level, low

earth orbits, or if the orbit inclination is significantly different than 87 degrees then it is

recommended a study of the optimal impulse firing times be performed, as the effect of

choosing an optimal firing time became increasingly apparent for further from nominal

conditions.

7.2 Future Work

There are a number of areas for future work as it relates to this project. A full char-

acterization of the efficacy of the two controllers for all inclination angles and orbital

altitudes need be performed in order to determine the performance of the two systems in

less than optimal conditions. There appears to be no consensus on designing an optimal

firing time algorithm for hybrid control systems similar to this as the theories surround-

ing these controllers are still quite new, thus innovative work could be done in this area.

In addition, advanced methods for automatic tuning of the algorithm weight matrices

would benefit designers and speed up mission analysis.

7.3 Summary

A simulator capable of modelling the kinematics and dynamics of a spacecraft was con-

structed inside Matlab for the purpose of testing the efficacy of detumbling algorithms

for different input conditions. It was shown that both the B-Dot and Hybrid controllers

performed reasonably well at a common used orbital altitude and inclination. As the or-

bit began to deviate from this the performance of the B-Dot controller began to degrade

rapidly whereas the optimal controller was able to continue performing reasonably well.
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